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Abstract
We propose a physical-world question-answering
(QA) method, where the system answers a text
question about the physical-world by searching
a given sequence of sentences about daily-life
episodes. To address various information needs in
a physical-world situation, the physical-world QA
methods have to generate mixed-type responses
(e.g. word sequence, word set, number, and time as
well as a single word) according to the content of
questions, after reading physical-world event sto-
ries. Most existing methods only provide words
or choose answers from multiple candidates. In
this paper, we use multiple decoders to gener-
ate a mixed-type answer encoding daily episodes
with a memory architecture that can capture short-
and long-term event dependencies. Results using
house-activity stories show that the use of multiple
decoders with memory components is effective for
answering various physical-world QA questions.

1 Introduction
Recording human activities in the physical-world as linguis-
tic descriptions [Krishna et al., 2017; Miyanishi et al., 2018]
can bring a better understanding of our everyday lives. An-
swering questions about such human daily episodes as in a
personal digital store [Gemmell et al., 2002] is an essential
skill for intelligent machines that support people in their ev-
eryday activities such as human-memory aid and healthcare
monitoring.

In this paper, we tackle a physical-world question-
answering (QA) task where the QA method returns various
answers in response to the content of a question when a se-
quence of sentences about physical-world events is given as
in Figure 1. To achieve this scenario, the QA method requires
complex reasoning referring to multiple contexts because ev-
eryday life consists of multiple events (e.g. drinking coffee
in the living room after making it in the kitchen and moving
to the living room.) Moreover, since people have a variety of
information needs in physical-world situations, the methods
of the physical-world QA tasks have to answer mixed-type
responses (e.g. word sequence, word set, number, and time,
as well as a single word) as to a user question. However, most

ID Answer Question Type
A1 kitchen word

A2 drink the coffee sequence

A3 0 number

A4 coffee, cookies set

A5 12-15 15:30:22 time

ID Question
Q1 Where was Saito before the living_room?

Q2 What is Saito doing?

Q3 How many objects is Saito holding

Q4 What did Saito hold before sitting?

Q5 When did Saito stir the coffee?

Time Event
12-15  15:30:22 Saito stir the coffee in the kitchen

12-15  15:30:23 Saito hold the coffee in the kitchen

12-15  15:30:23 Saito hold the cookies in the kitchen

12-15  15:30:25 Saito walk to the living_room

12-15  15:30:30 Saito sit in the living room

12-15  15:30:31 Saito put the coffee in the living_room

12-15  15:30:31 Saito put the cookies in the living_room

12-15  15:30:35 Saito drink the coffee in the living_room

Time

Figure 1: Illustration of physical-world question-answering tasks.

existing QA methods read text and then answer questions by
generating text response, extracting words from source text,
or choosing from multiple candidates for answers [Richard-
son et al., 2013; Yang et al., 2015; Hermann et al., 2015;
Weston et al., 2016; Rajpurkar et al., 2016; Hill et al., 2016].

Motivated by these issues, we propose a novel physical-
world QA method that encodes multiple sentences describ-
ing physical-world events using Memory Networks [Weston
et al., 2015; Sukhbaatar et al., 2015] for capturing short-
and long-term relationships and decodes mixed-type answers
with multiple decoders for simultaneously learning classifi-
cation, regression, sequence generation and time prediction
problems. Moreover, to mitigate the different scale of each
decoder loss, we incorporate self-paced learning into such
multi-task learning of multiple decoders. We assume that
starting with learning easy QA tasks and ending with learning
relatively difficult QA tasks is effective for training multiple
decoders that will output mixed-type answers.

To evaluate our physical-world QA method, we use non-
synthetic everyday life stories describing various daily activi-
ties that subjects perform in a house-hold setting. The exper-



Saito stir the coffee in the kitchen

Saito hold the coffee in the kitchen

Saito hold the cookies in the kitchen

Saito walk to the living_room

Saito sit in the living_room

Saito put the coffee in the living_room

Saito put the cookies in the living_room

Saito drink the coffee in the living_room

Encoder

Sentence 
Em

bedding

What did Saito hold before sitting?

Q
uestion

Em
bedding

Memory Networks

Context Vector

Events

Question

Multi-Hop
Addressing

Decoder

Word Decoder

Sequence Decoder

Set Decoder

Number Decoder

Time Decoder

Decoder
Selector

sit

coffee, cookies

hold the coffee

2

12-15 15:30:23

Candidates of Answers

Selected Answer

Mixed-Type Decoders

Soft
Attention

Select Decoder Outputs

Question Vector

Sentence Vectors

Figure 2: Illustration of proposed encoder-decoders framework.

imental results suggest that encoding physical-world events
with memory components significantly improves QA per-
formance. Moreover, we found that multi-task learning on
different type QA problems is highly effective for solving
physical-world QA problems and that self-paced learning of
multiple decoders supports solving difficult QA tasks.

The remainder of this paper is organized as follows. First,
we provide some background in question-answering for text
stories. Then, we present the physical-world QA task and the
proposed method to solve it. Finally, we show an experimen-
tal evaluation of daily-activity datasets collected in house-like
settings and then present our conclusions.

2 Related Work
The physical-world QA can be seen as returning text re-
sponse after reading a text describing a story of arbitrary
length. There have been many QA tasks answering ques-
tions for stories, such as selecting an answer from multi-
ple choices after reading materials [Richardson et al., 2013;
Weston et al., 2016], selecting the span of text that answers
a question from a large collection of documents [Yang et
al., 2015; Rajpurkar et al., 2016], and predicting the miss-
ing named entities in a given passage [Hermann et al., 2015;
Hill et al., 2016].

Among these tasks, the bAbI [Weston et al., 2016]1 is
closely related to our physical-world QA tasks. The dataset
is commonly used for checking algorithms of text-story un-
derstanding and reasoning. In this dataset, a series of triplets
(short stories, question, and answer) generated by a simple
simulation similar to the approach of [Bordes et al., 2010]
are given. For example, when the story and a question, “Mary
moved to the bathroom. John went to the hallway. Where is
Mary?” is given, QA methods have to give the correct an-
swer “bathroom”. To solve this task, many deep learning

1https://github.com/facebook/bAbI-tasks

methods have been proposed such as Memory Networks [We-
ston et al., 2015; Sukhbaatar et al., 2015], Dynamic Mem-
ory Networks [Kumar et al., 2016], and Differentiable Neu-
ral Computers [Graves et al., 2016]. These neural-network
models have an external memory for encoding a given se-
quence of sentences and access it using an attention mecha-
nism [Bahdanau et al., 2015] for selecting a relevant answer.
The results of these works indicate using external memory
as encoders is highly effective for answering questions that
require solving long-term sentence dependencies compared
to RNN-based models [Hochreiter and Schmidhuber, 1997;
Sukhbaatar et al., 2015] that output an answer after reading a
sequence of words in a question and story as input. Even
though we also use Memory Networks for encoding a se-
quence of sentences that represent daily episodes, the effec-
tiveness of memory components is unknown when answering
physical-world QA tasks. In addition, we use multiple de-
coders and simultaneously learn them for producing mixed-
type answers that are required to respond to physical-world
questions instead of selecting prepared candidates of answers
or producing words or word sequences with a single decoder.
Furthermore, the physical-world QA dataset we use is not
artificial data created by simulation unlike the bAbI dataset.
Our dataset is manually annotated by humans watching first-
person videos captured by wearable cameras attached to sub-
jects who perform various activities in a real house.

3 Proposed Method
In this section, we present our method. First, we give
an overview of the proposed physical-world QA framework
along with QA examples. We then proceed to the details of
our QA framework based on the encoder-decoder model.

3.1 Physical-world Question Answering
Our goal is to answer questions about daily episodes in re-
sponse to a given language question and temporally ordered



sentences that describe activities of daily living (i.e. event
timeline). We use the encoder-decoder models that encode
a given sequence of sentences with timestamps into internal
representations as external-memory components and then de-
code mixed-type answers in response to a given question us-
ing multiple decoders and a decode selector.

Figure 2 shows an example of the proposed method with
the event timeline when moving to the living room after
preparing coffee and cookies in kitchen. Our framework an-
swers various kinds of questions according to the content of
the question. For example, the method has to answer the
objects a person has when a question “What did the person
hold?” is given. In addition, the method has to return a times-
tamp when a question “When did the person do some action”.

These problems need to consider reasoning multiple facts
in a sequence of sentences. To this end, we use Memory
Networks as an encoder, which is a simple neural network
with an external memory. Moreover, to generate mixed-type
answers, we use several decoders that can solve multi-class
and multi-label classification, regression, sequence genera-
tion, and time prediction problems. We introduce the encoder
and the decoders in the following sections.

3.2 Memory Networks Encoder
We use Memory Networks [Weston et al., 2015; Sukhbaatar
et al., 2015] for encoding multiple sentences that describe
physical-world states. Our Memory Networks takes a dis-
crete set of events e = [e1, . . . , e|e|] that is to be stored in the
memory, a question q, and outputs an answer a, where q has
timestamp qt when the question was issued, e has timestamp
et, which is a start-time of an event when a subject does ADL
(activity of daily living), and a is a tuple (a1, . . . , a|a|). Note
that a becomes mixed-type data in response to the content of
a question. For example, a denotes a number a = 3 when
predicting how many objects he/she is holding. Each of the
ei and q contains symbols coming from a dictionary with V
words. Each answer a also comes from a dictionary with V
words when predicting a word, word sequence and set.

Content-Based Memory Addressing
We convert all events ei into N real-valued vectors mi and
m′

i for input and output of memory representations. Old
events are discarded when |e| > M , where M is the mem-
ory size. We compute each mi and m′

i by embedding each
ei in a continuous space using embedding matrices A,C ∈
RN×V , respectively. We also embed the question q with an-
other embedding matrix B ∈ RN×V to obtain an internal
state u. To read memory in response to question q, we use
soft attention defined as follows:

o =

K∑
i=1

pim
′
i, (1)

where p ∈ RN is a vector of non-negative weights that sum to
one. Each weight p is used for addressing content in memory
related to a question. We define for the i-th read weight,

pi = Softmax(uTm)i (2)
where Softmax(z)i = exp(zi)/

∑
j exp(zj). The weight

pi can be seen as a probability vector over the inputs. We
compute gradients in all rows of memory per time step.

Multi-Hop Addressing
We stack memory layers to handle l hop operations in Mem-
ory Networks. The input to layers above the first is the sum
of the output ok and the input uk from layer k:

uk+1 = uk + ok. (3)
Each layer has its own embedding matrices Ak, Ck, used to
embed the inputs. To ease training and reduce the number of
parameters, we use adjacent weight. Thus, the output embed-
ding for one layer is the input embedding for the one above,
i.e. Ak+1 = Ck. In addition, we constrain the question em-
bedding to match the input embedding of the first layer, i.e.
B = A1. After memory addressing l times, we get the input
embedding ul+1 that is a context vector c ∈ RN .

3.3 Mixed-Type Decoders
To respond to mixed-type answers, we use multiple decoders
that transform the context vector c into mixed-type data such
as word, word set, word sequence, number, and time (mem-
ory pointer). We also use a decode selector for selecting an
optimal decoder suitable for each problem as in Figure 2. By
using decode selectors, the framework selects decode outputs
in response to the content of question. An index of the de-
coder for the final prediction is

i∗ = argmax
i=1,...,D

Softmax(W dc) (4)

where W d ∈ RD×N and D is the number of decoders. The
final prediction is

a = Decoderi∗(c), (5)
where Decoderi(·) outputs i-th decoder. The parameter
of the decode selector is updated by the cross-entropy be-
tween its outputs and the question-type label attached to each
question-answer pair in the training data. We introduce each
decoder in the following sections.

Word Decoder
To predict a single word as answer, we use the multi-class
classification framework. The method predicts a label a = w
from vocabulary V based on the context vector c. We use
the weight matrix W c ∈ RV×N and a softmax function to
produce the indicator that selects the word.

ŵ = Softmax(W cc). (6)
We update their parameters while minimizing a cross-entropy
loss between the predicted probabilities and the true answers
as Lword(ŵ,w) = −

∑
i wi log(ŵi).

Set Decoder
To predict a word set in response to a question, we use a
multi-labeling approach. The method predicts a tuple a =
(w1, . . . , wm), where m is the size of a word set and each w
is from vocabulary V based on the context vector c. We use
the weight matrix Wm ∈ RV×N and a softmax to produce
the output of the decoder as

ŵ = Sigmoid(Wmc), (7)
where Sigmoid(zi) = 1/(1 + exp(−zi)). We select top
m words with higher values in ŵ as an answer. To up-
date parameters, we use the loss function that optimizes
a multi-label one-versus-all loss defined as Lset(ŵ,w) =
−
∑

i

{
wi log(1− ŵi) + (1−wi) log(ŵi)

}
.



Sequence Decoder
For the word-sequence generation, we use a recurrent neural
network language model (RNNLM) [Mikolov et al., 2010]
that produces a word sequence a = [w1, w2, . . . , wn], where
w from vocabulary V and n is the number of words in the
answer. RNNLM updates the following equations:

ht = f(ht−1,wt), (8)
ŵt = Softmax(W sht + b), (9)

where f(·) is a function of RNN, W s ∈ RV×O, O is
the number of hidden units (N in our case), and b is
a bias term. We initialize h0 with the context vector
c. We use the cross entropy between wt+1 and ŵt over
{w1, . . . ,wt}, then Lseq({ŵ1, . . . , ŵn}, {w1, . . . ,wn}) =
−
∑

t wt+1 log(ŵt).

Number Decoder
To predict a number, we solve the regression problem. The
method predicts a label a = r ∈ R based on the context
vector c. We use the weight vector wr ∈ RN as

r̂ = wrc, (10)
where y ∈ R. When predicting an integral number, we
cast the real number into the integer as an output. We use
a squared loss Lnum(r̂, r) = (r̂ − r)2 to update parameters.

Time Decoder
To solve the time prediction problem, we use a binary-class
classification framework that indicate a specific index of
memory (memory pointer) s ∈ [1, . . . ,M ] relevant to the an-
swer based on the context vector c. We use the weight matrix
W s ∈ R(M+1)×N and a softmax function to produce the in-
dicator that selects the output of the decoder:

ŝ = Softmax(W sc), (11)
where the index of M + 1 indicates out of memory. We up-
date their parameters while minimizing a cross-entropy loss
between the predicted probabilities and the true answers as
Ltime(ŝ, s) = −

∑
i si log(ŝi). This decoder outputs an

timestamp of event a = ets when testing.

3.4 Self-Paced Learning for Multiple Decoders
We train the proposed encoder-decoders based on neural net-
works with multi-task learning, which is widely used for
many natural language processing (NLP) tasks such as multi-
lingual neural machine translation [Luong et al., 2016] and
a joint learning of a wide variety of NLP tasks [Collobert
and Weston, 2008; Hashimoto et al., 2017]. The advantage
of multi-task learning of neural networks is that it can learn
useful shared features for related tasks and robustly improve
performance with limited data. However, each decoder in our
proposed method has a different scale of loss values, since
each decoder outputs a different type data.

To address this problem, we use self-paced learning for si-
multaneously learning our encoder-decoder model. We fol-
low the self-paced learning for multi-task problems [Muruge-
san and Carbonell, 2017]. The objective function L̃ of the
self-paced learning for T tasks is given as:

L̃(τ, θ,X,y) =
∑
t∈T

τtL(θt,Xt,yt) + λr(τ), (12)

where L(θt,Xt,yt) = 1
Nt

∑
i∈Nt

l(θit,X
i
t,y

i
t). Note that

each L corresponds to Lword, Lset, Lseq , Lnum, and Ltime.
l(θit,X

i
t,y

i
t) is each loss function of a i-th instance given that

t-th task is associated with Nt training examples. Since our
method of shared knowledge in the encoder and regulariza-
tion term is included in each loss, we omit the regularization
term over decoders. The learning algorithm considers a task
easy if it has low training error. We define τt as

τt =

{
1 L(θt,Xt,yt) < λ
δ otherwise.

We set τt = δ for the hard tasks. We also use the parameter
c that controls the learning pace of the self-paced procedure
(i.e., λ← cλ for each iteration). We set the c value as greater
than 1 for relaxing threshold λ.

4 Experiments
In this section, we reports on the empirical evaluation for
the proposed physical-world QA method on a daily activity
dataset.

4.1 Dataset
We make a document collection describing various daily ac-
tivities in a house-hold setting. To this end, we re-annotate
a daily activity dataset that has been used in the egocentric
video retrieval and the event timeline generation [Miyanishi
et al., 2016; 2018] for physical-world QA problems. It con-
tains first-person videos captured by a head-mounted wear-
able camera attached to eight subjects. They performed 20
continuous ADLs in six different places 10 times (i.e. a to-
tal of 10 sessions) under the semi-naturalistic collection pro-
tocol [Bao and Intille, 2004] for collecting variable activi-
ties. For example, the subject makes a cookie in the kitchen,
moves to the living room with it, and eats it after sitting on
the sofa. Total video length is about 17 hours. We define
physical-world events in one session as a single story indi-
cating that each subject has 10 stories. To evaluate physical-
world QA methods, we re-annotated this dataset with struc-
tured event descriptions of the ADLs that subjects performed
in a house. We obtained 11,497 sentences of ADL events with
1,031 unique events. For QA tasks, we prepared 22 question
and answer templates that ask about the state of the physical-
world. Each template is categorized by question types corre-
sponding to each decoder output. We prepared questions and
their answers on the collected stories using these templates.
Table 1 shows the template of questions and answers we used
for generating question-and-answer pairs of each task. We
randomly insert 25 questions into each story. If there are no
answers to questions, an “unknown” token is used for an-
swers. In total, our QA dataset, which we call a daily liv-
ing QA dataset, has 2,000 questions for each question answer
template. Figure 3 shows examples of our QA tasks.

4.2 Baselines
We prepared the proposed method and several baselines
based on the encoder-decoder model:



Question Answer

Word

Where is [person]? [place]
Where is [object]? [place]
Did [person] go to [place]? yes/no
Where was [person] before [place]? [place]
Where was [person] after [place]? [place]
Who is in [place]? [person]
Who did [action] [object]? [person]
Who did [action] [object] in [place]? [person]
Where did [person] [action] [object]? [place]

Set

What is [person] holding? [object]+
Which rooms lights are on? [place]+
Which rooms did [person] go? [place]+

Sequence

What is [person] doing? [action] [object]
What did [person] do after [action] [object]? [action] [object]
What did [person] do before [action] [object]? [action] [object]

Number

How many rooms did [person] go? [number]
How many rooms lights are on? [number]
How many objects is [person] holding? [number]
How many times did [person] [action] [object]? [number]

Time

When was [person] in [place]? [time]
When did [person] [action]? [time]
When did [person] [action] in [place]? [time]

Table 1: Question and answer template on each QA task used for
generating questions and answers, where [person], [object], and
[place] are words extracted from stories, [time] is extracted from
the timestamp field, and ‘+’ indicates multiple words.

• RNN+RNN [Sutskever et al., 2014] is a standard
sequence-to-sequence model that encodes the story un-
til the point it reaches a question and then decodes word
sequence as an answer.

• RNN+MixDecs encodes a story with RNN and then de-
codes mixed-type answers in response to a question us-
ing multiple decoders.

• MemNN+RNN [Sukhbaatar et al., 2015] is standard
Memory Networks that encodes a story with multiple
sentence embeddings and addresses them in response to
a question embedding and then decodes word sequence
as an answer.

• MemNN+MixDecs encodes a story and a question with
Memory Networks into a context vector and decodes it
to mixed-type answers using multiple decoders.

• MemNN+MixDecs+SelfPaced is equal to
MemNN+MixDecs except that self-paced learning
is used when learning this model.

RNN+RNN and RNN+MixDecs have a disadvantage with
regard to encoding a long story compared to MemNN+RNN
and MemNN+MixDecs, which use external memory. More-

Task	16:		Number	Prediction
03-02	14:26:56 Borma remove	the	shoe	in	the	entrance
03-02	14:26:57 Borma wear	the	slipper	in	the	entrance
03-02	14:26:59 Borma walk	to	the	living_room
03-02	14:27:02 Borma flip	the	switch	in	the	living_room
03-02	14:27:05 Borma wipe	the	floor	in	the	living_room
03-02	14:27:05 How	many	rooms	did	Borma go?					2							int

Task	20:		Time	Prediction
03-03	10:52:13 Paz	hold	the	cup	in	the	kitchen
03-03	10:52:13 Paz	hold	the	plate	in	the	kitchen
03-03	10:52:15 Paz	walk	to	the	living_room
03-03	10:52:22 Paz	put	the	cup	in	the	living_room
03-03	10:52:22 Paz	put	the	plate	in	the	living_room
03-03	10:52:15 When	was	Paz	in	the	kitchen?	 03-03	10:52:13				time

Task	1:	Word	Prediction
02-17	10:44:36 Aramaki walk	in	the	entrance
02-17	10:44:40 Aramaki remove	the	shoe	in	the	entrance
02-17	10:44:40 Where	is	Aramaki?					entrance								word Question	Type

Events Question

Task	11:		Word	Set	Prediction
02-17	10:44:44 Aramaki walk	to	the	living_room
02-17	10:44:47 Aramaki flip	the	switch	in	the	living_room
02-17	10:44:49 Aramaki walk	to	the	bedroom
02-17	10:44:56 Aramaki flip	the	switch	in	the	bedroom
02-17	10:44:56 Which	rooms	lights	are	on?				living_room,	bedroom			set

Task	14:		Word	Sequence	Prediction
02-24	14:48:38 Togusa walk	to	the	bathroom
02-24	14:48:47 Togusa flip	the	switch	in	the	bathroom
02-24	14:48:49 Togusa walk	in	the	bathroom
02-24	14:48:55 Togusa open	the	toilet	in	the	bathroom
02-24	14:49:01 Togusa unroll	the	toilet_paper in	the	bathroom
02-24	14:49:01 What	is	Togusa doing?				unroll	the	toilet_paper seq

Answer

number

Figure 3: Examples of a physical-world QA dataset that contains
physical-world events, questions, and their answers. We use alias
names for subjects.

over, they cannot answer questions about time since RNN
simply reads the story as a sequence of words and does
not distinguish each physical-world event. RNN+RNN and
MemNN+RNN use RNN for generating an answer, so they
cannot predict continuous numbers such as time. Thus,
the use of multiple decoders enables us to use more train-
ing examples for multi-task learning. We also prepared
MemNN+MixDecs+SelfPaced for whether the self-paced
learning contributes our QA tasks.

4.3 Experimental Settings
We used the QA dataset about four subjects for a training
set and two subjects for a validation set, which was used
to tune model- and hyper-parameters. We trained all meth-
ods using a learning rate 0.01 and a batch size of 128 un-
til 10 epochs were reached. The weights were initialized
randomly from a Gaussian distribution N (0, 0.01). A null
symbol was used to pad them all to a fixed size. The em-
bedding of the null symbol was constrained to be zero. For
all RNN encoders and decoders, we used a gated recurrent
unit (GRU) [Cho et al., 2014] with two stacked hidden lay-
ers and a bidirectional RNN [Schuster and Paliwal, 1997].
For all methods, we make the dimension of the hidden states
equal to the dimension of the word embeddings and select
the the dimension of states from N = {128, 256, 512}. We
used a dropout [Srivastava et al., 2014] rate of 0.5 for the
outputs of each RNN layer, and the linear transformation be-



Question Type
RNN+
RNN

RNN+
MixDecs

MemNN+
RNN

MemNN +
MixDecs

MemNN+
MixDecs+
SelfPaced

Word 0.614 0.607 0.749 0.787 0.766
Set 0.747 0.570 0.818 0.838 0.849
Sequence 0.518 0.564 0.590 0.689 0.741
Number 0.545 0.554 0.715 0.676 0.744

All 0.605 0.583 0.728 0.756 0.771

Table 2: Physical-world QA performance on 19 QA tasks without
the Time prediction task. Best results are bolded.

Question Type
MemNN +

RNN
MemNN +
MixDecs

MemNN +
MixDecs +
SelfPaced

Word 0.752 0.775 0.771
Set 0.807 0.835 0.835
Sequence 0.628 0.621 0.707
Number 0.735 0.706 0.775
Time 0.499 0.786 0.719

All 0.705 0.751 0.765

Table 3: Physical-world QA performance on 22 QA tasks. Best
results are bolded.

fore the softmax for the answers except for the number de-
coder. For MemNN+RNN and MemNN+MixDecs, we set
a fixed number (l = 3 hops) in the encoding of Memory
Networks. For MemNN+MixDecs, we also used self-paced
learning selecting parameter candidates among λ = {0.1, 1},
δ = {0.01, 0.1}, and c = {1.01, 1.1}. We evaluated all meth-
ods under the ParlAI framework [Miller et al., 2017] and used
F1 measure as an evaluation metric. We separately trained
and predicted when the question type is Time or not since the
RNN encoder does not have explicit memory to point out a
timestamp. Note that we simultaneously learn multiple de-
coders unless otherwise noted.

4.4 Results
In this section, we describe the experimental results over
all methods when using the daily living QA dataset. Ta-
ble 2 shows the QA performances across 19 tasks except for
the Time question type using RNN+RNN, RNN+MixDecs,
MemNN+RNN, MemNN+MixDecs. The overall results
showed that MemNN+RNN and MemNN+MixDecs out-
performed RNN+RNN and RNN+MixDecs respectively
indicating that memory components mounted on Mem-
ory Networks significantly improve the QA performance
on daily episodes, which requires short-term and long-
term dependencies in QA compared to RNN. These re-
sults are similar to using the simulation dataset intro-
duced in past work [Sukhbaatar et al., 2015]. With re-
gard to decoder performance, MemNN+MixDecs outper-
formed MemNN+RNN on average when used with and
without time questions. The results suggest that us-
ing multiple decoders with memory components is effec-
tive for a wide variety of questions compared to decodes
with RNN that generate only word sequence. Table 3
shows the QA performances across all 22 tasks. The
results show that MemNN+MixDecs+SelfPaced outper-

Question Type

MemNN +
MixDecs
(Each)

MemNN +
MixDecs
(Joint)

MemNN +
MixDecs +
SelfPaced

(Joint)

Word 0.776 0.775 0.771
Set 0.822 0.835 0.835
Sequence 0.507 0.621 0.707
Number 0.576 0.706 0.775
Time 0.610 0.786 0.719

All 0.687 0.751 0.765

Table 4: Physical-world QA performance of learning by each ques-
tion type or joint learning of various questions. Best results are
bolded.

formed MemNN+MixDecs, suggesting that weighting de-
coders with self-paced learning is effective when learning
multiple decoders for our QA tasks.

Table 2 also shows the QA performances on each ques-
tion type except for the Time question type. Across all
types of answers, MemNN+RNN and MemNN+MixDecs
outperformed RNN+MixDecs and RNN+RNN. The results
indicate that memory components are essential for improv-
ing QA performance for all types of question. From
the results in table Sequence and Number, questions are
relatively difficult. MemNN+MixDecs+SelfPaced im-
proved these questions. We assumed that self-paced learn-
ing, which learns more difficult problems after first learn-
ing simple problems, improves this performance. The
results of MemNN+MixDecs+SelfPaced outperforming
MemNN+MixDecs support this idea.

Table 4 shows the results of learning the encoder-decoder
model by each question type or joint learning of various
questions. We assumed that jointly learning multiple prob-
lems despite using mixed-type decoders is good for solv-
ing various questions since this method can learn useful
features in the shared encoder for related tasks augment-
ing training data and then improve its performance. Com-
paring MemNN+MixDecs (Each) to MemNN+MixDecs
(Joint) and MemNN+MixDecs+SelfPaced (Joint), the re-
sults show that joint learning is effective for improving most
question types. The results indicates that the multi-task learn-
ing on different type QA problems is highly effective for solv-
ing physical-world QA problems.

5 Conclusion
We have shown that physical-world QA tasks answer var-
ious questions by reading physical-world events in daily
episodes. To solve this problem, we proposed an encoder-
decoder model combining memory components and multi-
task learning for mixed-type decoders. The experimental re-
sults of using a daily living QA dataset indicate that multi-
task learning of several different QA problems is suitable for
solving problems that are important for the physical-world
QA tasks.

Acknowledgments
This work was supported by JST CREST Grant Number JP-
MJCR15E2 and JSPS KAKENHI Grant Number 16K21718.



References
[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

[Bao and Intille, 2004] Ling Bao and Stephen S Intille. Ac-
tivity recognition from user-annotated acceleration data. In
Pervasive, pages 1–17, 2004.

[Bordes et al., 2010] Antoine Bordes, Nicolas Usunier, Ro-
nan Collobert, and Jason Weston. Towards understanding
situated natural language. In AISTATS, 2010.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder–decoder for statistical
machine translation. In EMNLP, pages 1724–1734, 2014.

[Collobert and Weston, 2008] Ronan Collobert and Jason
Weston. A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning. In
ICML, pages 160–167, 2008.

[Gemmell et al., 2002] Jim Gemmell, Gordon Bell, Roger
Lueder, Steven Drucker, and Curtis Wong. Mylifebits:
Fulfilling the memex vision. In ACMMM, pages 235–238,
2002.

[Graves et al., 2016] Alex Graves, Greg Wayne, Mal-
colm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
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